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10. KdV equation and Solitary wave 

 
10.1 Finite Amplitude Long Wave 

Thus far, we have neglected the non-linear effect of waves.  However, the 
height of tsunami waves is not satisfactorily small as compared with the depth and 
wavelength.  We introduce two types of “small parameters” here: one is the ratio of 

the wave height a  to depth D, Da /≡ε , and the other is the ratio of depth D to 
the wavelength L, LD /=δ .  ε denotes non-linearity while δ represents a long 
wave parameter.  They are independent of each other. Based on these parameters, 
we can classify the waves into four categories: 

(1) Both ε and δ are small: For example, long wave gDc =    (10.1) 

(2) ε is small, and δ is not always small: 
     Examples include linear waves (Airy’s infinite amplitude wave), deep waves, 
and shallow water waves. 
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for the case of ∞→D ： Deep water wave 
π2

gLc =  

                                               (10.2),(10.2’) 
(3)  δ is small, and ε is not always small:  

       Long wave of finite amplitude, which is solvable by the characteristic  
curve method.   Examples are bore and shock waves 

(4) Both ε and δ are not always small: 
       Examples 

Stokes wave to Levi Civita’s waves  
Trocoidal wave（Gerstner’s wave）, a waves that can be solved by the 

Lagrangian Method, 
 In this chapter, we will solve for the case that ε and δ are small but not infinitely small 
(category (3)). 

     
Ursell’s assumption 
     In the present study, we assume Ursell’s assumption: 
            )()( 21εδ OO =                         (10.3) 
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  and  Ursell’s parameter  
            322 // DaLUr == δε                   (10.4) 
is a moderate number 
 
10.2  Expansion of the Velocity Potential Function in Taylor series 

We assume that the motion of sea water is a non-vortex and that the velocity 
potential function φ  exists; further, the flow ),( vu  is given by the following: 

   )/,/(),( yxvu ∂−∂∂−∂= φφ     (10-5) 
We consider the case that the sea depth is uniform )( D= , and we assume the 

x-axis in the direction of the wave, and y -axis perpendicular to it.  The origin is set 
at a point on the undisturbed sea surface.  

The equation of motion (Mass conservation equation) )0//( =∂∂+∂∂ yvxu  is 
expressed by using the velocity potential function φ  in the following form 
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The sea bed condition is given by 
     0=v   on Dy −=                               (10-7) 

 
  The velocity potential function can be generally expressed in the form 

),,( tyxφφ = and is also expressed in the form of the Taylor series of y around the sea 
bed Dy −=   
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Here ⋅⋅⋅3210 ,,, φφφφ are subordinate functions of tx,  alone. 
(10-7) can be written by using φ: 
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By substituting (10-8) in (10-6), we have ( suffix “ x ” means differentiation of x) 
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In other words, 

     { }∑
∞

=
=++++

0
, 0)()2)(1(

n

n
nxxn Dynn φφ          (10-10) 

(10-10) should be satisfied for any yx,   in such a manner that all the terms in { } are 
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zero.We then have 
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When k is an odd number, i. e., 12 += mk , 
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Thus, the even number terms vanished. 
[Question 1] In general, even if 0)( =xf  at ax = ,  )(xf ′  is not always zero at 

ax = .  Then why can we say that 0)( =′ af  in this discussion？ 
When k  is an even number, i. e, mk 2= , 
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Equation (10-6) finally becomes 
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［Question 2］Prove that this equation can be expressed in the following form 
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10.3  Order Estimation 
 We assume that the order of the magnitude of the first term of (10-13) is unity. The 

next term ( ) ( )2
0

22 !2 xDy ∂∂×+− φ  is obtained by the following procedure. 

φ is multiplied by（ 2)Dy +  and is differentiated twice with respect to x . Thus, its 
order is estimated as φ × 22 / LD , and hence, the second term has the order of 

    φ× 1222 )/( εδ ==LDO φ 
Similarly, the third term of (10-13) has the order of 2ε φ. 
 
10.4  Kinematic sea surface condition 

The kinematic sea surface condition in the strict form is given by 
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   with ),( txy η=                         (10-15） 

(10-15) is satisfied if η=y , that is, 
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We transfer this into an equation satisfied when 0=y . By applying the Taylor series 
for y=0, we have 
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Order→     1      1ε       2ε  
We only select the highest and second highest terms; the kinematic sea surface 

condition (10-13) then finally takes the following form: 
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Order →  １     ε    １    ε 

［Question 3］ No water is present when 0=y  at the trough of the wave, and hence, 
we cannot determine the “current velocity” (u, v) at such a location. How should we 
interpretation such a point keeping (10-17) in mind? 
 
10.5 Dynamic sea surface condition 
  Dynamic (pressure) sea surface condition is given by Bernoulli’s Equation as follows: 
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 Let us try to estimate the orders of these four terms by using the following order 
estimation table. 
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                                                     (10.19-a,b,c,d,e,f) 
The order of the first term should be balanced with the second term, and hence, 
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Thus we choose the terms up to the order of 
 

      .
2
1 2 constug

t y

=++⎥⎦
⎤

⎢⎣
⎡

∂
∂−

=

ηφ
η

   for η=y         (10-20) 

We again apply the Taylor series expansion around 0=y  for the first term,  thereby 
obtaining       
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After estimating the order of the second term, we find that 
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Thus we have the final form of the dynamic boundary condition on the sea surface as 
follows: 
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Order→ 1          1ε           1     1ε   
  Thus, the basic equations in the present problem to be solved are (10-17) and 
(10-23), and the unknowns are φ and η. 
 
10.6  Zero-th order solution 
 
 We only select the maximum order terms in (10-17). 
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Substituting the second term of (10-13) in (10-17-a) gives 
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Hence, we have 
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On the other hand, we choose the maximum order term, and then we have 
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Eliminating 0φ , we obtain 
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This is a general form of the equation of a wave, and has the following solution: 
          )()( 0 ctxftcxf ++−= −+η                                  (10-27) 
Here, −+ ff ,  are the wave components in the positive and negative x directions, 
respectively. 
Note that )( ctxf −= +η  satisfies the following relationship: 
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Hereafter, we only consider the wave components moving in the positive x direction. 
Substituting (10-28) in (10-25) yields 
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Integrating wrt x leads to 
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10.7 First-Order Solution 
We now proceed to the first-order solution: We choose all the terms in (10-17). 
By using (10-30) and the third term of (10-16) into the last term of (10-17), we obtain  
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On the other hand, the dynamic sea surface condition (10-23) is reduced similarly, 
yielding  
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 By eliminating 0φ  from (10-31) and (10-32), we have  
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By comparing this equation with (10-26), we find that the term of () is added to it, and 
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this is a first-order small term. 
  We set the first-order term to be )(ηP , that is, 
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Then, since )(ηP  has only one subordinate valuable η,  we have the first order 
approximation  
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（Note） ( )ctx −≈ ηη , and hence, P also satisfies )( ctxPP −≈ , and (10-35) is 
satisfied. 
(10-51) can be expressed in the form  
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We consider )(ηF  to be a second-order unknown function satisfying 
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We substitute this into (10-36), and it takes the following form 
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Dividing by 0c  and integrating with respect to x , we have 
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We again substitute this into (10-55), giving 
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We rewrite the right-hand side of this equation into two parts as follows: 
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By comparing this equation and the left-hand side of (10-38),  we find out that the 
unknown function ( )ηF  can be set as )(2/1)( ηη PF = . 
Thus, we transfer  (10-51) into the following form in order to accommodate the positive 
x component as follows: 
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We call this equation as the Korteweg-de-Vries (KdV) Equation for an ocean wave. 
 
10.8 Normal form of ＫｄＶ equation 
 We introduce the transfer of the independent valuables in (10-39) as follows: 
  tTtcxX =−= ,0                                      (10-40) 
and the subordinate valuable η as   
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The coefficient is  set as  
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Then we finally obtain the normal form of KdV Equation as 
  0=++ XXXXT βξξξξ                                    (10-41) 
Moreover, if we introduce the following transformation  
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10.9  Soliton Solution of the KdV Equation 

    Let us solve (10-41) by assuming that the shape of the wave does not changes 
permanently.  The KdV equation (10-41) has a solution of a permanent type, with only 
one peek.  

We assume that an observer moves on a car with a speed γ.  (10-42) then has a 
permanent solution )( TX γξξ −=  that satisfies 
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  0=++− XXXXX βξξξγξ                                       (20-43) 
It is possible to integrate this wrt X  in the limit between ｛－∞， X ｝;  we give the 
condition at the left infinitive as [ ] 0=−∞=Xξ , thereby obtaining  
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We multiply this by ２ Xξ , it wrt X , and the result is as follows: 
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This equation can be solved by Xξ  as  
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This is a differential equation of a variables separable type, and it is easily solved. We 
simply use  
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This is solved in the following form, in which we set the integral constant C as Tγ  
because the final solution should be the form )( TXf γξ −= . 
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(See “Sugaku Koshiki 1” by “Iwanami press”, p95” 
This equation can be solved by ξ  in the following form 

  ⎟
⎠
⎞

⎜
⎝
⎛ −−= )(

2
1sec 2 TXbh

a
b γξ                                   (10-47) 

［Question］Explain why we make the integral constant C as Tγ  in calculation of 
(10-47) 
［Question］Derive (10-65) from (10-64). 
We re-set the parameters using the original style, yielding 
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We put A≡γ3 , and we have the formula of the form of a solitary wave as follows: 
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This is the solution of the normal form of the KdV equation (10-41).  (10-49) shows a 
curve of one symmetry peek, similar as the normal distribution curve in statistics.  
A  is the height of the peek and is only one control parameter of the solution; in other 
words, once the wave height A is decided, the “effective length” L  is also decided at the 
same time.  We again re-set the original variables in (10-49),  and we then have the 
following dimensional form as   
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where 3/0 Acc += .  We introduce the real (actually visual) waveform by introducing 

a real wave height )
3
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and  
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Note that the local depth at the peek is HD + and the velocity of the long wave is given 
by    
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This is very similar to the velocity formula (10-52).  
 
 


