10. KdV equation and Solitary wave

10.1 Finite Amplitude Long Wave
Thus far, we have neglected the non-linear effect of waves. However, the
height of tsunami waves is not satisfactorily small as compared with the depth and
wavelength. We introduce two types of “small parameters” here: one is the ratio of
the wave height @ to depth D, € =a/D | and the other is the ratio of depth D to
the wavelength Z, 0=D/L. ¢ denotes non-linearity while § represents a long
wave parameter. They are independent of each other. Based on these parameters,

we can classify the waves into four categories:

(1) Both £ and § are small: For example, long wave C=4/gD  (10.1)

(2) e1is small, and & is not always small:
Examples include linear waves (Airy’s infinite amplitude wave), deep waves,

and shallow water waves.

c= g_Ltanh@ ,
\ 27 L
gL

for the case of D — [0 Deep water wave C=,/—

2
(10.2),(10.2)
(3) §issmall, and ¢ is not always small:
Long wave of finite amplitude, which is solvable by the characteristic
curve method. Examples are bore and shock waves
(4) Both e and § are not always small:
Examples
Stokes wave to Levi Civita’s waves
Trocoidal wavell Gerstner’s wavell , a waves that can be solved by the
Lagrangian Method,
In this chapter, we will solve for the case that € and 6 are small but not infinitely small

(category (3)).

Ursell’s assumption

In the present study, we assume Ursell’s assumption:

O(5) = 0(e*?) (10.3)
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and Ursell’s parameter
Ur=¢/6?=al’/D? (10.4)

1s a moderate number

10.2 Expansion of the Velocity Potential Function in Taylor series
We assume that the motion of sea water is a non-vortex and that the velocity
potential function @ exists; further, the flow (U,V) is given by the following:
(u,v) = (-0¢/0x,—d¢ [ dy) (10-5)

We consider the case that the sea depth is uniform (= D), and we assume the
x-axis in the direction of the wave, and Y -axis perpendicular to it. The origin is set
at a point on the undisturbed sea surface.

The equation of motion (Mass conservation equation) (QU/0X+0v/dy=0) is

expressed by using the velocity potential function @ in the following form

¢ 9%¢
Vz = — = -
¢ ( P + asz 0 (10-6)

The sea bed condition is given by

v=0 on Yy=-D (10-7)

The velocity potential function can be generally expressed in the form
¢ =0(X, Y,t) and is also expressed in the form of the Taylor series of y around the sea
bed Y=-D

¢ =0, +¢,(y+D) +6,(y+D)* +¢,(y+ D)’ +--- (10-8)
Here @9.9::0,,P; - are subordinate functions of XU alone.
(10-7) can be written by using ¢:
5, a0
ay - O ¢1 - (10'9)

By substituting (10-8) in (10-6), we have ( suffix “X” means differentiation of x)

S by (y+ D) +n(n-1)g, (y+D)"2}=0

n=0

In other words,

o

> B + (N+D(N+2)¢, (y+D)" =0 (10-10)

n=0

(10-10) should be satisfied for any X, Y in such a manner that all the terms in { } are
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zero.We then have

1
b = k(k —1)

When kis an odd number, i. e., K=2m+1,

P20 k=23, (10-11)

Do =

1 1 w1 (YT
_(2m+1)2m¢2m’1_(2m+1)2m(2m—1)(2m—2) Ooms == (D) (2m+1)![axj =0

Thus, the even number terms vanished.
[Question 1] In general, even if T(X)=0 at X=a f(X) is not always zero at
X=2a, Then why can we say that | (@) =0 in this discussion]

When K is an even number, 1. e, k= 2m,

Pom = (=D)" m% (10-10)
Equation (10-6) finally becomes
9=~ (y+2D) Dot (y+ D)’ T Do (10-13)
0 Question 20 Prove that this equation can be expressed in the following form
9= COS{(W D)=~ }% (10-14)

10.3 Order Estimation
We assume that the order of the magnitude of the first term of (10-13) is unity. The

next term — (y+ D)2 / 2Ax (az% / aXZ) is obtained by the following procedure.

@ 1s multiplied byd Y+ D)2 and is differentiated twice with respect to X. Thus, its
order is estimated as @ x D?/L?, and hence, the second term has the order of
oxO(D2/12) =82 = ¢y
Similarly, the third term of (10-13) has the order of £Z¢.

10.4 Kinematic sea surface condition

The kinematic sea surface condition in the strict form is given by

877 an
- 3 = X’t -
V= ot +u W with Y =71(x1) (10-150

(10-15) is satisfied if Y =7 that is,
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We transfer this into an equation satisfied when Y =0, By applying the Taylor series

for y=0, we have

R R e

- =l = t == t—==37 +oe 10-16
{ dy y=n dy y=0 ayz y=0 2 ay3 y=0 ( )
Order— 1 et g?

We only select the highest and second highest terms; the kinematic sea surface

condition (10-13) then finally takes the following form:

99| L[ 9% _on [_a_q an
{ E)YLOJ{ E)yzl_o_atJr X ], OX (10-17)

Order — O e O e

O Question 300 No water is present when Y = 0 at the trough of the wave, and hence,
we cannot determine the “current velocity” (u, v) at such a location. How should we

interpretation such a point keeping (10-17) in mind?

10.5 Dynamic sea surface condition

Dynamic (pressure) sea surface condition is given by Bernoulli’s Equation as follows:

3 1
[_a_?} + 977+§(U2 +v2): const. for Y=77 (10.18)
y=n

Let us try to estimate the orders of these four terms by using the following order

estimation table.
O(g)=c®/D=0(L*/(DT?))=0(6°D/T?)=0(¢'DIT?)
O(gn) =0(¢'D/T?xa) =0(¢'D/Tx&'D) =0O(D?/T?)
O(v) =0(a/T) =0(e'D/T),0(v?) = O(&’D?* I T?)
O(u) =O(vxL/D)=0(&'D/TxL/D)=0(¢'6 'D/T)
OU?)=0(e*67°D?IT?)=0(£'D*IT?)

(10.19-a,b,c,d,e,f)

The order of the first term should be balanced with the second term, and hence,
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O([—%—ﬂ )=0(gn) =0(D?/T?) (10.19-g)

Thus we choose the terms up to the order of

d 1
_90 gn+-u*=const. o V=7 (10-20)
ol ., 2
We again apply the Taylor series expansion around Y = O for the first term, thereby
obtaining
9¢ 9¢ 9°¢
iR 1020
y=1 y=0 Y y=0
After estimating the order of the second term, we find that
82
9|-221 p|=oeD?IT?) (1022
oyot |
y=0
Thus we have the final form of the dynamic boundary condition on the sea surface as
follows:
aq { azq 17,
- | t|l—5| "t 977+—[U ]y:O = const. (10.23)
[ at |, dyot yo 2
Order— 1 et 1 et

Thus, the basic equations in the present problem to be solved are (10-17) and

(10-23), and the unknowns are ¢ and 1.
10.6 Zero-th order solution

We only select the maximum order terms in (10-17).

_9¢| _on
|: ay:|y_0 - ot (10-17-a)

Substituting the second term of (10-13) in (10-17-a) gives

|:_?:| = [(y-l— D)¢0,xx]y:0 = D¢Oxx
am

Hence, we have
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d
- D@, +91 _¢ (10-24)

ot
On the other hand, we choose the maximum order term, and then we have
0
%% gn=0 (10-25)
ot
Eliminating @, we obtain
°n _ .9°n
=C (10-26)
o2 % ox?
This is a general form of the equation of a wave, and has the following solution:
n="f (x=ct)+ f_(x+ct) (10-27)

Here, f,,f_ are the wave components in the positive and negative x directions,
respectively.
Note that 77 = f, (X—Ct) satisfies the following relationship:
on d1
e A St (10-28)
ot % ox
Hereafter, we only consider the wave components moving in the positive x direction.

Substituting (10-28) in (10-25) yields

Do +Co aa_;] =0 (10-29)
Integrating wrt x leads to
Uy = &n (10-30)
D

10.7 First-Order Solution
We now proceed to the first-order solution: We choose all the terms in (10-17).
By using (10-30) and the third term of (10-16) into the last term of (10-17), we obtain

99,  C 1 5
-——+—(Dn, +— =0 10-31
97 ==+ (Ot 577 (10-31)
On the other hand, the dynamic sea surface condition (10-23) is reduced similarly,
yielding
0,1 D?
— D@y +Co—(=n° ——14)=0 10-32
e = Do+ Co= (5717 == 11x) (10-32)
By eliminating @ from (10-31) and (10-32), we have
o’n  ,9°n 82[31 , 1 j
=C +¢D—|=——n"+=D -
atZ 0 axz 0 axz 2 D2 77 3 77xx (10 33)

By comparing this equation with (10-26), we find that the term of () is added to it, and
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this is a first-order small term.

We set the first-order term to be P(77), that is,

P(n)= D@ Dlz n° %ﬂxxj (10-34)
Then, since P(7) has only one subordinate valuable n, we have the first order
approximation

P_ —C, 9P (10-35)

ot oX

O Noted 77 = U(X—Ct), and hence, P also satisfies P=P(X—cCt) and (10-35) is
satisfied.
(10-51) can be expressed in the form
8277 2 82
ot

We consider F (77) to be a second-order unknown function satisfying

(77+ P) (10-36)

d
1, = —Co&{fﬁ F(m)} (10-37)

We substitute this into (10-36), and it takes the following form
d d 0°
—Co——(m+ C +P
oot )= 03%07 )

Dividing by C; and integrating with respect to X, we have
d d
-——Mm+F)=c,—(n+P
p (m+F)=c, w (7+P)

We again substitute this into (10-55), giving
o OF _OF_ o
ox ot oX
We rewrite the right-hand side of this equation into two parts as follows:
¢, oP 1C al:’_i_lC oP 1C08_P_18_P
8x28x28x28x28t
By comparing this equation and the left-hand side of (10-38), we find out that the
unknown function F(ﬂ) can be set as F(17) =1/2P(7) .

Thus, we transfer (10-51) into the following form in order to accommodate the positive

(10-38)

x component as follows:
0 [3 1 1

m+%m+%Da 4Dﬂ7 5

anxj =0 (10-39)
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We call this equation as the Korteweg-de-Vries (KdV) Equation for an ocean wave.

10.8 Normal form of [0 [0 [0 equation
We introduce the transfer of the independent valuables in (10-39) as follows:
X =x-Ct,T =t (10-40)

and the subordinate valuable n as
3¢
§ - 2 D 77!
The coefficient is set as

Co 2
=—D
p 6
Then we finally obtain the normal form of KdV Equation as

C."':T +§§x +,Bézxxx =0 (10-41)

Moreover, if we introduce the following transformation

X

T
ﬁ U= ﬁ Then (10-41) becomes
§, +66,+6,=0 (10-42)

Z=

10.9 Soliton Solution of the KdV Equation
Let us solve (10-41) by assuming that the shape of the wave does not changes
permanently. The KdV equation (10-41) has a solution of a permanent type, with only
one peek.
We assume that an observer moves on a car with a speed y. (10-42) then has a

permanent solution §=&8(X=T) that satisfies

E——Vﬁ (20-41) takes the following f
BT ax arKes e 10 OWlIlg orm

_7§x+§§x+ﬂ§xxx =0 (20-43)
It is possible to integrate this wrt X in the limit between 00 oo X ; we give the
condition at the left infinitive as [f ]x?m =0, thereby obtaining

1
—7§+§§2 + B =0 (10-44)
We multiply this by O & %, 1t wrt X, and the result is as follows:
1
- %5? +§§3+ﬂ§>2< =0

This equation can be solved by &y as
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E =& |- __g (10-45)

This is a differential equation of a variables separable type, and it is easily solved. We

simply use

d
X :I ﬁ (10-45b)

This is solved in the following form, in which we set the integral constant C as/T
because the final solution should be the form ¢ = f (X —=7T) .

1 T,
X = ‘\/ﬁﬁ-\/—‘ (10'46)

(See “Sugaku Koshiki 1” by “Iwanami press”, p95”

This equation can be solved by ¢ in the following form
b 1
&= —E%Chz[?/g(x - 7T)j (10-47)

O QuestionO Explain why we make the integral constant C as ?T in calculation of
(10-47)
0 Questiond Derive (10-65) from (10-64).

We re-set the parameters using the original style, yielding

&= 37990h2{%\/%(x - 7T)} (10-48)

We put 3y = A and we have the formula of the form of a solitary wave as follows:

&= A%Chz{%\/g(x - 7T)} (10-49).

This is the solution of the normal form of the KdV equation (10-41). (10-49) shows a
curve of one symmetry peek, similar as the normal distribution curve in statistics.

A is the height of the peek and is only one control parameter of the solution; in other
words, once the wave height A is decided, the “effective length” L is also decided at the
same time. We again re-set the original variables in (10-49), and we then have the

following dimensional form as

80



2 AD 1A
=—" " sech?!= /_ —ct ;
n 3¢ Sec {2 3/3(X C)} (10-50)

where C=C,+A/3. We introduce the real (actually visual) waveform by introducing

2 AD

a real wave height H(= g_c ) We have the final form as
0
1 [3H
= Hsech® = [ —(x—ct (10-51)
n > N E (x—ct)
and
c=¢ [1+ ij ( )
0 D 10-52

Note that the local depth at the peek is D + H and the velocity of the long wave is given
by

p 1
C=J9(D+ H) =\/gDL1+%j2 zc0[1+%j (10-53)

This is very similar to the velocity formula (10-52).
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