10. KdV equation and Solitary wave

10.1 Finite Amplitude Long Wave

Thus far, we have neglected the non-linear effect of waves. However, the height of tsunami waves is not satisfactorily small as compared with the depth and wavelength. We introduce two types of "small parameters" here: one is the ratio of the wave height a to depth $D, \varepsilon \equiv a / D$, and the other is the ratio of depth D to the wavelength $L, \delta=D / L . \varepsilon$ denotes non-linearity while δ represents a long wave parameter. They are independent of each other. Based on these parameters, we can classify the waves into four categories:
(1) Both ε and δ are small: For example, long wave $c=\sqrt{g D}$
(2) ε is small, and δ is not always small:

Examples include linear waves (Airy's infinite amplitude wave), deep waves, and shallow water waves.

$$
c=\sqrt{\frac{g L}{2 \pi} \tanh \frac{2 \pi D}{L}},
$$

for the case of $\boldsymbol{D} \rightarrow \infty$: Deep water wave $c=\sqrt{\frac{g L}{2 \pi}}$
(3) δ is small, and ε is not always small:

Long wave of finite amplitude, which is solvable by the characteristic curve method. Examples are bore and shock waves
(4) Both ε and δ are not always small:

Examples
Stokes wave to Levi Civita's waves
Trocoidal wave (Gerstner's wave), a waves that can be solved by the Lagrangian Method,

In this chapter, we will solve for the case that ε and δ are small but not infinitely small (category (3)).

Ursell's assumption

In the present study, we assume Ursell's assumption:

$$
\begin{equation*}
O(\delta)=O\left(\varepsilon^{1 / 2}\right) \tag{10.3}
\end{equation*}
$$

and Ursell's parameter

$$
\begin{equation*}
U r=\varepsilon / \delta^{2}=a L^{2} / D^{3} \tag{10.4}
\end{equation*}
$$

is a moderate number

10.2 Expansion of the Velocity Potential Function in Taylor series

We assume that the motion of sea water is a non-vortex and that the velocity potential function ϕ exists; further, the flow (u, v) is given by the following:

$$
(u, v)=(-\partial \phi / \partial x,-\partial \phi / \partial y)
$$

We consider the case that the sea depth is uniform $(=D)$, and we assume the x -axis in the direction of the wave, and y-axis perpendicular to it. The origin is set at a point on the undisturbed sea surface.

The equation of motion (Mass conservation equation) $(\partial u / \partial x+\partial v / \partial y=0)$ is expressed by using the velocity potential function ϕ in the following form

$$
\begin{equation*}
\nabla^{2} \phi=\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}\right)=0 \tag{10-6}
\end{equation*}
$$

The sea bed condition is given by

$$
\begin{equation*}
v=0 \quad \text { on } \quad y=-D \tag{10-7}
\end{equation*}
$$

The velocity potential function can be generally expressed in the form $\phi=\phi(x, y, t)$ and is also expressed in the form of the Taylor series of y around the sea bed $y=-D$

$$
\begin{equation*}
\phi=\phi_{0}+\phi_{1}(y+D)^{1}+\phi_{2}(y+D)^{2}+\phi_{3}(y+D)^{3}+\cdots \tag{10-8}
\end{equation*}
$$

Here $\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3} \cdots$ are subordinate functions of x, t alone.
(10-7) can be written by using φ :

$$
\begin{equation*}
\left[\frac{\partial \phi}{\partial y}\right]_{y=-D}=\phi_{1}=0 \tag{10-9}
\end{equation*}
$$

By substituting (10-8) in (10-6), we have (suffix " X " means differentiation of x)

$$
\sum_{n=0}^{\infty}\left\{\phi_{n, x x}(y+D)^{n}+n(n-1) \phi_{n}(y+D)^{n-2}\right\}=0
$$

In other words,

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left\{\phi_{n, x x}+(n+1)(n+2) \phi_{n}\right\}(y+D)^{n}=0 \tag{10-10}
\end{equation*}
$$

$(10-10)$ should be satisfied for any x, y in such a manner that all the terms in $\}$ are
zero.We then have

$$
\begin{equation*}
\phi_{k}=\frac{1}{k(k-1)} \phi_{k-2}, \quad k=2,3, \cdots \tag{10-11}
\end{equation*}
$$

When k is an odd number, i. e., $k=2 m+1$,

$$
\phi_{2 m+1}=
$$

$$
-\frac{1}{(2 m+1) 2 m} \phi_{2 m-1}=\frac{1}{(2 m+1) 2 m(2 m-1)(2 m-2)} \phi_{2 m-3}=\cdots=(-1)^{m} \frac{1}{(2 m+1)!}\left(\frac{\partial}{\partial x}\right)^{2 m} \phi_{1}=0
$$

Thus, the even number terms vanished.
[Question 1] In general, even if $f(x)=0$ at $x=a, f^{\prime}(x)$ is not always zero at $x=a$. Then why can we say that $f^{\prime}(a)=0$ in this discussion ?
When k is an even number, i. e, $k=2 m$,

$$
\begin{equation*}
\phi_{2 m}=(-1)^{m} \frac{1}{(2 m)!} \phi_{0} \tag{10-10}
\end{equation*}
$$

Equation (10-6) finally becomes

$$
\begin{equation*}
\phi=\phi_{0}-\frac{(y+D)^{2}}{2!} \phi_{0 . x x}+\frac{(y+D)^{4}}{4!} \phi_{0, x x x x}-\cdots \tag{10-13}
\end{equation*}
$$

[Question 2] Prove that this equation can be expressed in the following form

$$
\begin{equation*}
\phi=\cos \left\{(y+D) \frac{\partial}{\partial x}\right\} \phi_{0} \tag{10-14}
\end{equation*}
$$

10.3 Order Estimation

We assume that the order of the magnitude of the first term of (10-13) is unity. The next term $-(y+D)^{2} / 2!\times\left(\partial^{2} \phi_{0} / \partial x^{2}\right)$ is obtained by the following procedure.
φ is multiplied by $(y+D)^{2}$ and is differentiated twice with respect to x. Thus, its order is estimated as $\varphi \times D^{2} / L^{2}$, and hence, the second term has the order of

$$
\varphi \times O\left(D^{2} / L^{2}\right)=\delta^{2}=\varepsilon^{1} \varphi
$$

Similarly, the third term of (10-13) has the order of $\varepsilon^{2} \varphi$.

10.4 Kinematic sea surface condition

The kinematic sea surface condition in the strict form is given by

$$
\begin{equation*}
v=\frac{\partial \eta}{\partial t}+u \frac{\partial \eta}{\partial x} \quad \text { with } \quad y=\eta(x, t) \tag{10-15}
\end{equation*}
$$

$(10-15)$ is satisfied if $y=\eta$, that is,

$$
[v]_{y=\eta}=\left[-\frac{\partial \phi}{\partial y}\right]_{y=\eta}
$$

We transfer this into an equation satisfied when $y=0$. By applying the Taylor series for $\mathrm{y}=0$, we have

$$
\begin{equation*}
\left[-\frac{\partial \phi}{\partial y}\right]_{y=\eta}=\left[-\frac{\partial \phi}{\partial y}\right]_{y=0}+\left[-\frac{\partial^{2} \phi}{\partial y^{2}} \eta\right]_{y=0}+\left[-\frac{1}{2!} \frac{\partial^{3} \phi}{\partial y^{3}} \eta^{2}\right]_{y=0}+\cdots \tag{10-16}
\end{equation*}
$$

Order \rightarrow

1

ε^{1}
ε^{2}
We only select the highest and second highest terms; the kinematic sea surface condition (10-13) then finally takes the following form:

$$
\begin{equation*}
\left[-\frac{\partial \phi}{\partial y}\right]_{y=0}+\left[-\frac{\partial^{2} \phi}{\partial y^{2}}\right]_{y=0}=\frac{\partial \eta}{\partial t}+\left[-\frac{\partial \phi}{\partial x}\right]_{y=0} \frac{\partial \eta}{\partial x} \tag{10-17}
\end{equation*}
$$

$\begin{array}{ccccc}\text { Order } \rightarrow & 1 & \varepsilon & 1\end{array}$
[Question 3] No water is present when $y=0$ at the trough of the wave, and hence, we cannot determine the "current velocity" (u, v) at such a location. How should we interpretation such a point keeping (10-17) in mind?

10.5 Dynamic sea surface condition

Dynamic (pressure) sea surface condition is given by Bernoulli's Equation as follows:

$$
\begin{equation*}
\left[-\frac{\partial \phi}{\partial t}\right]_{y=\eta}+g \eta+\frac{1}{2}\left(u^{2}+v^{2}\right)=\text { const. for } y=\eta \tag{10.18}
\end{equation*}
$$

Let us try to estimate the orders of these four terms by using the following order estimation table.

$$
\begin{aligned}
& O(g)=c^{2} / D=O\left(L^{2} /\left(D T^{2}\right)\right)=O\left(\delta^{-2} D / T^{2}\right)=O\left(\varepsilon^{-1} D / T^{2}\right) \\
& O(g \eta)=O\left(\varepsilon^{-1} D / T^{2} \times a\right)=O\left(\varepsilon^{-1} D / T \times \varepsilon^{1} D\right)=O\left(D^{2} / T^{2}\right) \\
& O(v)=O(a / T)=O\left(\varepsilon^{1} D / T\right), O\left(v^{2}\right)=O\left(\varepsilon^{2} D^{2} / T^{2}\right) \\
& O(u)=O(v \times L / D)=O\left(\varepsilon^{1} D / T \times L / D\right)=O\left(\varepsilon^{1} \delta^{-1} D / T\right) \\
& O\left(u^{2}\right)=O\left(\varepsilon^{2} \delta^{-2} D^{2} / T^{2}\right)=O\left(\varepsilon^{1} D^{2} / T^{2}\right)
\end{aligned}
$$

(10.19-a,b,c,d,e,f)

The order of the first term should be balanced with the second term, and hence,

$$
\begin{equation*}
O\left(\left[-\frac{\partial \phi}{\partial t}\right]_{y=\eta}\right)=O(g \eta)=O\left(D^{2} / T^{2}\right) \tag{10.19-g}
\end{equation*}
$$

Thus we choose the terms up to the order of

$$
\begin{equation*}
\left[-\frac{\partial \phi}{\partial t}\right]_{y=\eta}+g \eta+\frac{1}{2} u^{2}=\text { const. } \quad \text { for } y=\eta \tag{10-20}
\end{equation*}
$$

We again apply the Taylor series expansion around $y=0$ for the first term, thereby obtaining

$$
\begin{equation*}
\left[-\frac{\partial \phi}{\partial t}\right]_{y=\eta}=\left[-\frac{\partial \phi}{\partial t}\right]_{y=0}+\left[-\frac{\partial^{2} \phi}{\partial y \partial t}\right]_{y=0} \eta \tag{10-21}
\end{equation*}
$$

After estimating the order of the second term, we find that

$$
\begin{equation*}
O\left(\left[-\frac{\partial^{2} \phi}{\partial y \partial t}\right]_{y=0} \eta\right)=O\left(\varepsilon^{1} D^{2} / T^{2}\right) \tag{10.22}
\end{equation*}
$$

Thus we have the final form of the dynamic boundary condition on the sea surface as follows:

$$
\begin{equation*}
\left[-\frac{\partial \phi}{\partial t}\right]_{y=0}+\left[-\frac{\partial^{2} \phi}{\partial y \partial t}\right]_{y=0} \eta+g \eta+\frac{1}{2}\left[u^{2}\right]_{y=0}=\text { const. } \tag{10.23}
\end{equation*}
$$

$\begin{array}{llll}\text { Order } \rightarrow 1 & \varepsilon^{1} & 1 & \varepsilon^{1}\end{array}$
Thus, the basic equations in the present problem to be solved are ($10-17$) and (10-23), and the unknowns are φ and η.

10.6 Zero-th order solution

We only select the maximum order terms in (10-17).

$$
\begin{equation*}
\left[-\frac{\partial \phi}{\partial y}\right]_{y=0}=\frac{\partial \eta}{\partial t} \tag{10-17-a}
\end{equation*}
$$

Substituting the second term of (10-13) in (10-17-a) gives

$$
\left[-\frac{\partial \phi}{\partial y}\right]_{y=0}=\left[(y+D) \phi_{0, x x}\right]_{y=0}=D \phi_{0, x x}
$$

Hence, we have

$$
\begin{equation*}
-D \phi_{0, x x}+\frac{\partial \eta}{\partial t}=0 \tag{10-24}
\end{equation*}
$$

On the other hand, we choose the maximum order term, and then we have

$$
\begin{equation*}
-\frac{\partial \phi_{0}}{\partial t}+g \eta=0 \tag{10-25}
\end{equation*}
$$

Eliminating ϕ_{0}, we obtain

$$
\begin{equation*}
\frac{\partial^{2} \eta}{\partial t^{2}}=c_{0}^{2} \frac{\partial^{2} \eta}{\partial x^{2}} \tag{10-26}
\end{equation*}
$$

This is a general form of the equation of a wave, and has the following solution:

$$
\begin{equation*}
\eta=f_{+}\left(x-c_{0} t\right)+f_{-}(x+c t) \tag{10-27}
\end{equation*}
$$

Here, f_{+}, f_{-}are the wave components in the positive and negative x directions, respectively.
Note that $\eta=f_{+}(x-c t)$ satisfies the following relationship:

$$
\begin{equation*}
\frac{\partial \eta}{\partial t}=-c_{0} \frac{\partial l}{\partial x} \tag{10-28}
\end{equation*}
$$

Hereafter, we only consider the wave components moving in the positive x direction.
Substituting (10-28) in (10-25) yields

$$
\begin{equation*}
D \phi_{0, x x}+c_{0} \frac{\partial \eta}{\partial x}=0 \tag{10-29}
\end{equation*}
$$

Integrating wrt x leads to

$$
\begin{equation*}
u_{0}=\frac{c_{0}}{D} \eta \tag{10-30}
\end{equation*}
$$

10.7 First-Order Solution

We now proceed to the first-order solution: We choose all the terms in (10-17).
By using $(10-30)$ and the third term of (10-16) into the last term of (10-17), we obtain

$$
\begin{equation*}
g \eta-\frac{\partial \phi_{0}}{\partial t}+\frac{c_{0}^{2}}{2}\left(D \eta_{x x}+\frac{1}{D^{2}} \eta^{2}\right)=0 \tag{10-31}
\end{equation*}
$$

On the other hand, the dynamic sea surface condition (10-23) is reduced similarly, yielding

$$
\begin{equation*}
\eta_{t}-D \phi_{0, x x}+c_{0} \frac{\partial}{\partial x}\left(\frac{1}{D} \eta^{2}-\frac{D^{2}}{6} \eta_{x x}\right)=0 \tag{10-32}
\end{equation*}
$$

By eliminating ϕ_{0} from (10-31) and (10-32), we have

$$
\begin{equation*}
\frac{\partial^{2} \eta}{\partial t^{2}}=c_{0}^{2} \frac{\partial^{2} \eta}{\partial x^{2}}+c_{0}^{2} D \frac{\partial^{2}}{\partial x^{2}}\left(\frac{3}{2} \frac{1}{D^{2}} \eta^{2}+\frac{1}{3} D \eta_{x x}\right) \tag{10-33}
\end{equation*}
$$

By comparing this equation with ($10-26$), we find that the term of 0 is added to it, and
this is a first-order small term.
We set the first-order term to be $P(\eta)$, that is,

$$
\begin{equation*}
P(\eta) \equiv D\left(\frac{3}{2} \frac{1}{D^{2}} \eta^{2}+\frac{1}{3} \eta_{x x}\right) \tag{10-34}
\end{equation*}
$$

Then, since $P(\eta)$ has only one subordinate valuable n , we have the first order approximation

$$
\begin{equation*}
\frac{\partial P}{\partial t}=-c_{0} \frac{\partial P}{\partial x} \tag{10-35}
\end{equation*}
$$

(Note) $\eta \approx \eta(x-c t)$, and hence, P also satisfies $P \approx P(x-c t)$, and (10-35) is satisfied.
($10-51$) can be expressed in the form

$$
\begin{equation*}
\frac{\partial^{2} \eta}{\partial t}=c_{0}^{2} \frac{\partial^{2}}{\partial x^{2}}(\eta+P) \tag{10-36}
\end{equation*}
$$

We consider $F(\eta)$ to be a second-order unknown function satisfying

$$
\begin{equation*}
\eta_{t}=-c_{0} \frac{\partial}{\partial x}\{\eta+F(\eta)\} \tag{10-37}
\end{equation*}
$$

We substitute this into (10-36), and it takes the following form

$$
-c_{0} \frac{\partial}{\partial x} \frac{\partial}{\partial t}(\eta+F)=c_{0}^{2} \frac{\partial^{2}}{\partial x^{2}}(\eta+P)
$$

Dividing by c_{0} and integrating with respect to x, we have

$$
-\frac{\partial}{\partial t}(\eta+F)=c_{0} \frac{\partial}{\partial x}(\eta+P)
$$

We again substitute this into (10-55), giving

$$
\begin{align*}
& c_{0} \frac{\partial}{\partial x}(\eta+F)-\frac{\partial F}{\partial t}=c_{0} \frac{\partial \eta}{\partial x}+c_{0} \frac{\partial P}{\partial x} \\
& \therefore \quad c_{0} \frac{\partial F}{\partial x}-\frac{\partial F}{\partial t}=c_{0} \frac{\partial P}{\partial x} \tag{10-38}
\end{align*}
$$

We rewrite the right-hand side of this equation into two parts as follows:

$$
c_{0} \frac{\partial P}{\partial x}=\frac{1}{2} c_{0} \frac{\partial P}{\partial x}+\frac{1}{2} c_{0} \frac{\partial P}{\partial x} \cong \frac{1}{2} c_{0} \frac{\partial P}{\partial x}-\frac{1}{2} \frac{\partial P}{\partial t}
$$

By comparing this equation and the left-hand side of (10-38), we find out that the unknown function $F(\eta)$ can be set as $F(\eta)=1 / 2 P(\eta)$.
Thus, we transfer ($10-51$) into the following form in order to accommodate the positive x component as follows:

$$
\begin{equation*}
\eta_{t}+c_{0} \eta_{x}+c_{0} D \frac{\partial}{\partial x}\left(\frac{3}{4} \frac{1}{D^{2}} \eta^{2}+\frac{1}{6} D \eta_{x x}\right)=0 \tag{10-39}
\end{equation*}
$$

We call this equation as the Korteweg-de-Vries (KdV) Equation for an ocean wave.

10.8 Normal form of K d V equation

We introduce the transfer of the independent valuables in (10-39) as follows:

$$
\begin{equation*}
X=x-c_{0} t, T=t \tag{10-40}
\end{equation*}
$$

and the subordinate valuable $\mathrm{\eta}$ as

$$
\xi=\frac{3}{2} \frac{c_{0}}{D} \eta,
$$

The coefficient is set as

$$
\beta \equiv \frac{c_{0}}{6} D^{2}
$$

Then we finally obtain the normal form of KdV Equation as

$$
\begin{equation*}
\xi_{T}+\xi \xi_{X}+\beta \xi_{X X X}=0 \tag{10-41}
\end{equation*}
$$

Moreover, if we introduce the following transformation

$$
\begin{align*}
& z=\frac{X}{\sqrt{\beta}}, \tau=\frac{T}{\sqrt{\beta}} \text { Then (10-41) becomes } \\
& \xi_{\tau}+\xi \xi_{z}+\xi_{z z z}=0 \tag{10-42}
\end{align*}
$$

10.9 Soliton Solution of the KdV Equation

Let us solve ($10-41$) by assuming that the shape of the wave does not changes permanently. The KdV equation (10-41) has a solution of a permanent type, with only one peek.

We assume that an observer moves on a car with a speed Y . ($10-42$) then has a permanent solution $\xi=\xi(X-\gamma T)$ that satisfies

$$
\begin{align*}
& \frac{\partial \xi}{\partial T}=-\gamma \frac{\partial \xi}{\partial X}(20-41) \text { takes the following form } \\
& -\gamma \xi_{X}+\xi \xi_{X}+\beta \xi_{X X X}=0 \tag{20-43}
\end{align*}
$$

It is possible to integrate this wrt X in the limit between $\{-\infty, X\}$; we give the condition at the left infinitive as $[\xi]_{X=-\infty}=0$, thereby obtaining

$$
\begin{equation*}
-\gamma \xi+\frac{1}{2} \xi^{2}+\beta \xi_{x x}=0 \tag{10-44}
\end{equation*}
$$

We multiply this by $2 \xi_{X}$, it wrt X, and the result is as follows:

$$
-\gamma \xi^{2}+\frac{1}{3} \xi^{3}+\beta \xi_{X}^{2}=0
$$

This equation can be solved by ξ_{X} as

$$
\begin{equation*}
\xi_{X}=\xi \sqrt{\frac{\gamma}{\beta}-\frac{1}{3 \beta} \xi} \tag{10-45}
\end{equation*}
$$

This is a differential equation of a variables separable type, and it is easily solved. We simply use

$$
\begin{align*}
& -\frac{1}{3 \beta} \equiv a, \frac{\gamma}{\beta} \equiv b(10-63) \text { becomes } \\
& X=\int \frac{d \xi}{\xi \sqrt{a \xi+b}} \tag{10-45b}
\end{align*}
$$

This is solved in the following form, in which we set the integral constant C as γT because the final solution should be the form $\xi=f(X-\gamma T)$.

$$
\begin{equation*}
X=\frac{1}{\sqrt{b}} \log \left|\frac{\sqrt{a \xi+b}-\sqrt{b}}{\sqrt{a \xi+b}+\sqrt{b}}\right|+\gamma T \tag{10-46}
\end{equation*}
$$

(See "Sugaku Koshiki 1" by "Iwanami press", p95"
This equation can be solved by ξ in the following form

$$
\begin{equation*}
\xi=-\frac{b}{a} \operatorname{sech}^{2}\left(\frac{1}{2} \sqrt{b}(X-\gamma T)\right) \tag{10-47}
\end{equation*}
$$

[Question] Explain why we make the integral constant C as γT in calculation of (10-47)
[Question] Derive (10-65) from (10-64).
We re-set the parameters using the original style, yielding

$$
\begin{equation*}
\xi=3 \gamma \operatorname{sech}^{2}\left\{\frac{1}{2} \sqrt{\frac{\gamma}{\beta}}(X-\gamma T)\right\} \tag{10-48}
\end{equation*}
$$

We put $3 \gamma \equiv A$, and we have the formula of the form of a solitary wave as follows:

$$
\begin{equation*}
\xi=A \operatorname{sech} h^{2}\left\{\frac{1}{2} \sqrt{\frac{A}{3 \beta}}(X-\gamma T)\right\} \tag{10-49}
\end{equation*}
$$

This is the solution of the normal form of the KdV equation (10-41). (10-49) shows a curve of one symmetry peek, similar as the normal distribution curve in statistics.
A is the height of the peek and is only one control parameter of the solution; in other words, once the wave height A is decided, the "effective length" L is also decided at the same time. We again re-set the original variables in (10-49), and we then have the following dimensional form as

$$
\begin{equation*}
\eta=\frac{2}{3} \frac{A D}{c_{0}} \operatorname{sech}^{2}\left\{\frac{1}{2} \sqrt{\frac{A}{3 \beta}}(x-c t)\right\} \tag{10-50}
\end{equation*}
$$

where $c=c_{0}+A / 3$. We introduce the real (actually visual) waveform by introducing a real wave height $H\left(=\frac{2}{3} \frac{A D}{c_{0}}\right)$ We have the final form as

$$
\begin{equation*}
\eta=H \sec h^{2} \frac{1}{2} \sqrt{\frac{3 H}{D^{3}}}(x-c t) \tag{10-51}
\end{equation*}
$$

and

$$
\begin{equation*}
c=c_{0}\left(1+\frac{H}{2 D}\right) \tag{10-52}
\end{equation*}
$$

Note that the local depth at the peek is $D+H$ and the velocity of the long wave is given by

$$
\begin{equation*}
c=\sqrt{g(D+H)}=\sqrt{g D}\left(1+\frac{H}{D}\right)^{\frac{1}{2}} \approx c_{0}\left(1+\frac{H}{2 D}\right) \tag{10-53}
\end{equation*}
$$

This is very similar to the velocity formula ($10-52$).

